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Introduction 

This study addresses experimental investigation of the author’s invention “An Epitaxial device for 
Momentum Exchange with the Vacuum State” which uses the dynamic Casimir effect to transfer 
momentum to an object via interaction with the electromagnetic field ground state. Specifically the 
present work is directed toward preparing the specifications and requirements that would enable a 
semiconductor, or liquid crystal fabrication firm to build a small-scale test unit of the invention. 
The effort is divided into four tasks: 

1. Thoroughly review and correct, as necessary, the theoretical analysis of the force that can be 
produced by the device, particularly for the unrestricted (large) amplitude case.  
 
2. Perform design trade-off comparisons, determining force capability, size, dimensions of the 
laminae, wavelength range, power requirements, etc.  
 
3. Researching the literature to identify semiconductor or liquid crystal devices for which there is a 
wavelength range where the device can be switched from reflector to transparency, and vice versa. 
Estimate the achievable active wavelength band, and switching frequency. 
 
4. With a preliminary design, based upon Tasks (2) and (3), formulate the specifications for the 
manufacturer. 
 

The theoretical review of the fundamental concepts of the epitaxial device was presented at the 
Advanced Propulsion Workshop held at the Aerospace Corporation, El Segundo, California, 
November 1-3, 2017, and submitted as the paper “An Epitaxial Device for Dynamic Interaction 
with the Vacuum State” to the Journal of the British Interplanetary Society. This paper constituted 
the first report under this contract. In this report, we consider the details of the lamina switching 
algorithm since this topic has considerable impact on the performance specifications developed in 
this effort. The notations, conventions and basic definitions are those introduced in the first report. 
We begin with a brief review of the switching formulation and its underlying issues. 

 

 

 



 

Brief Review of the Lamina Switching Concept 

It is assumed that within certain wavelength bands, the reflectivity of each lamina can be set within 
a continuous range from completely reflective to completely transparent. The laminae are also 
characterized by a finite response time. These features can be combined so that when the laminae 
are sufficiently closely spaced, and their energizing processes are properly phased, a multi-lamina 
propagating wave of reflectivity can be created that sustains the properties of a continuously moving 
mirror.  

The finite response time of a semiconductor lamina allows us to create a continuously moving 
“front” at which the cumulative areal density of charge carriers suffices to produce a desired level 
of reflectance. Thus, although the laminae are discrete, their sequential stimulus at the proper rate 
yields the effect of a continuously moving mirror. 
 
Suppose that the conductivity, , of each individual lamina, in response to a voltage pulse, is 

uniform through the lamina thickness and has a simple linear rise and fall, as in: 
 

                                                                                                 (1) 

 
where  is the finite rise time. is the level of conductivity needed to make the lamina 
perfectly reflective. Suppose each successive lamina is stimulated at a sub-multiple of the rise time 
after its immediate predecessor, such that each rise in the reflectance is a small fraction of the 
complete reflectivity. Fig. 1 illustrates the resulting motion of the conductivity profile. An incoming 
plane wave suffers a cumulative reflection in proportion to the total charge carrier population per 
unit area along its path. In the example of the figure, the total areal population corresponding to 
some reflection coefficient, , is suggested by the gray-shaded areas. In general, the position of 

the “front” along which the total reflectance reaches some value is seen to move continuously in 
the direction of, and with the approximate speed of, the conductivity profile (illustrated by the 
blue-shaded boundary in the Figure). Even if the charge carrier profile has the staircase form as 
shown in the Figure, we show below that the effective conductivity profile approximates a 
continuously increasing distribution. This permits the device to approximate the reflective 
properties of a mechanical mirror, including the relativistic Doppler effects. Moreover, remaining 
discretization effects can be mitigated by designing a suitable charge carrier gradient for each 
lamina.  
 
In the following sections, we determine the conditions on lamina thickness and rise time such that 
a continuous mechanical mirror can be approximated by a propagating wave.   
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Figure 1. Temporal progression of conductivity as the laminas are successively pulsed. The blue-shaded boundary 
indicates the continuous motion of the front having a particular value of reflectance. 

 
 

Basic Formulation of the Reflective Behavior of the Switching Strategy 

We consider the behavior of the conductivity profile described above when a vacuum state field 
mode impinges on the device propagating along the z axis. It suffices to consider the forward 
portion of the reflectivity wave in Fig. 1, and the incident mode function emanating from the right 
with wave number k. Also one can assume that the electric field is linearly polarized along the x 
axis; thus: 

                                         (2.a,b) 

Then, the general wave equation becomes the well-known telegraph equation: 
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                                 (3.a,b) 

where   denotes the spatio-temporal distribution across the epitaxial device in accordance 

with that illustrated in Fig. 1.  Because the speed of the front varies slowly during one period, the 
reflective speed, ,  can be assumed constant, and: 

                                                                (4) 

where  is the time required for the conductivity to rise one step. This can be a small fraction of 

the rise time of the individual laminae.  

It is convenient to place the spatial origin at the point , and the forward edge of the staircase 
at the initial time at . This is illustrated in Fig. 2. Note that the conductivity distribution 
looks like a rising escalator. Defining  Equations (2,3) become: 

                            (5.a-c) 

The boundaries between step changes in the conductivity are located at: 

                                             (6) 

In particular, the forwardmost boundary is at . At these boundaries, the electric 

and magnetic fields must be continuous. Also, for , the incident wave is 

. The approximate boundary condition at  is . 

 

Figure 2. Temporal progression of conductivity as displayed as a function of  
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Evolution of the Mode Function in the Continuous Limit 

First consider the solution to the wave equation when the changes in the conductivity are either 

continuous or the step changes so small, that  may be approximated by a continuous, 

linear function. In particular, let  be a positive, real number, and set: 

                                                      (7) 

In this case it is obvious that for positive  the field must have the form: 

             (8) 

where  and  denote the reflection coefficient and the wave number of the reflected wave, 
respectively. For negative  the solution to the telegraph equation that vanishes at  must 
be chosen, and this propagates to the left. This gives a time dependence of the form: 

                                                 (9) 

where  is to be determined. 

Using (5.a) and (5.b) and the above formulae, we can determine the continuity conditions at 
: 

         (10.a,b) 

Consider (10.a). Since the effect of conductivity vanishes at the origin,  must match the wave 

number of the incident wave in (10.a), i.e. . Also, since the relation holds for all , 

the second exponent must match the first so that . Note that this is the 

correct reflection wave number as in the relativistic Doppler effect. Next, making substitutions, we 

find that . In summary, (10.a) yields: 

                              (11.a-c) 

Substituting these results into (10.b), integrating the left-hand side by parts, and defining 

, we have: 
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                            (12) 

 

Note that the integral on the left is the Fourier transform of . Hence by the Riemann-

Lebesque Lemma, the integral approaches zero as , and (12) is identically satisfied in this 
limit. We can use (12) to determine  as follows: 

                                      (13.a,b) 

Finally, expressing (5.a) in terms of : 

            (14.a-c) 

Requiring  we perform a perturbation expansion to arrive at the following 
approximation to the solution to (14): 

                           (15) 

This shows that the field magnitude decreases rapidly as the exponential-square with increasing 
penetration into the epitaxial layers. Using the second expression in (15): 

                                                       (16) 

Thus, if the skin depth of each lamina is relatively large, the factor in (13.a) dominates and there 
is nearly full reflection . One the other hand, if is small, since it is real-valued, the 

magnitude of the reflection coefficient is still of order unity. 

From the above development, one can appreciate that a preferred approach would be to have each 

forward-facing lamina have a negative gradient of , and have the back-facing the opposite 

gradient. If then it is obvious from Fig. 2 that the conductivity is continuous and 

linear across the various laminae, thereby matching the continuous model investigated here. It is 
not clear that such a design feature is possible, so the next section examines the case in which the 
conductivity is constant through the thickness of each lamina. 
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The discussion in this section not only serves to introduce the analysis of the discrete switching 
scheme of Figs. (1) and (2), it also suggests an alternate, continuous design concept. The linear 
conductivity profile of Equation (7) can be realized by structuring each lamina to have a linear 
spatial gradient of conductivity, making the forward end of the pyramidal profile fit condition (7). 

Analysis of the Discrete Lamina System 

Now consider the reflective properties of the system illustrated in Figs. 1 and 2, in which the 
conductivity is spatially uniform within each lamina. The conductivity/reflectivity varies step-wise in 
space, and each step, , is a small fraction of the value required for total reflectivity.   In 
determining the behavior of the field the most incisive relation, as in the last section, is the 
continuity of the electric field at the forward boundary. In this case, the forward boundary is 

, and on either side of this boundary we have: 

               (17.a,b) 

Where  are complex-valued, integrable functions. These relations yield the 

continuity condition: 

            (18) 

Note that since  and  are small,  must be approximately proportional, 

for all , to the incident wave, with some proportionality constant . Then: 

                       (19) 

 Now  can be expressed in the form: 

                                 (20.a) 

Substituting this into (19), we see that since  must equal 

 for all , the function  is determined by: 

                          (20.b) 

Next, let: 

                                        (20.c,d) 

Using (20.c) in (20.b) produces:  
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                                 (21.a) 

where  is the value of , as a function of , obtained by repeated substitution of (20.d) into 

its own right-hand side: 

                 (21.b) 

(20.a), and (21.a,b) establish the form of the reflected wave. It is apparent that the last term on the 
right of (21.a) preserves the relativistic Dopper shift of the reflected wave number. 

Now consider (21.a). We would like to minimize the quantity , which is the 

magnitude of the ratio of the first term to the second. The maximum value of  is , 

while the corresponding value of is . To ensure that the reflected wave frequency preserves 

the Doppler shift, we must require: 

                                      (22) 

where is a positive real number less than unity. In other words, under the 

condition: 

                                                       (23) 

This result is not surprising in that the discrete lamina case can be directly formulated as a finite 
difference approximation to the continuous problem, with as the time increment and  as the 

spatial increment. (23) is the Courant-Friedricks-Lewy condition for the stability of such an 
algorithm, taking account of the need to adequately approximate the reflected frequency.  

Further, one must consider the consequences of the inequality , or: 

                                       (24) 

is bounded by , and setting , we find that in order for this inequality to be 

satisfied, and obtain , we must have: 
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                                                              (25) 

Moreover, as diminishes, the conditions (23) and (25) assure that most finite difference schemes 
converge to the solution of the continuous case. This implies that these conditions permit the 
discrete case to well approximate the continuous case. 

The corresponding conditions for the analysis of the backward end of the chevron wave in Fig.1 
are less restrictive ( ) since the reflected wave frequency is smaller than the incident 

wavenumber. Hence (23) and (25) suffice for this case as well. 

To proceed further we determine the details of the extent to which the behavior of the discrete 
system differs from the continuous case. Referring to Fig.2, the difference between the discrete and 
continuous distributions is: 

                (26.a-c) 

 may be expressed in the Fourier series: 

                                          (27)                     

Let , where the first term denotes the continuous case field and the second denotes 

the first term in a perturbation expansion intended to evaluate the effect of . Neglecting 

second order terms,  obeys:  

     (28) 

From this it can be seen that  is of higher order in , and thus imposes no significant 

additional constraints. 

 

Comparison of the Continuous and Discrete Cases – Graded Lamina Design 

The continuous and the discrete switching design concepts have a number of advantages in 
common. In both cases, the achievable maximum speed of the reflective front can be much greater 
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than the ratio of the lamina thickness to the switching pulse time. Since the reflective front moves 
with the chevron pattern of the reflectivity, the relatively gentle grade of the reflectivity means that 
the actual speed is  divided by the sine of the angle of the conductivity profile. While this 

requires the use of several lamina to constitute the reflective surface, the benefit is that speeds close 
to that of light can be achieved with reasonable switching times. Moreover, with appropriate 
restrictions, both continuous and discrete concepts can duplicate the relativistic Doppler effects of 
a mechanical mirror. 

Regarding the discrete scheme, conditions (23) and (25) impose strong restrictions on the thickness 
of the lamina and the rise time of the switching process. In contrast, the continuous concept does 
not need these restrictions since its front-end reflectivity profile is continuous and linear, so that 
Doppler effects are preserved. Further, it allows thicker lamina and longer switching times to be 
used to achieve a desired maximum surface speed. An apparent drawback is that, unless the 
lamina gradient on the backside (down slope of the switching signal) is reversed, the backside 
conductivity profile is a saw tooth function. However, as is shown in the next section, the lamina 
gradients can remain the same, without imposing (23) and (25), and without diminishing the 
propulsive efficiency of the epitaxial array.  

 

The One-Sided Continuous Array – Propulsive Force Analysis 

Consider a modification of the conductivity across an individual lamina from spatially uniform, as 
in Fig. 1, to having a linear increase in the direction opposite to the intended motion of the 
reflective front. It is assumed that all lamina in the stack are graded in the same way, so that the 
forward-facing lamina can be arranged to have a continuous, conductivity profile, while the 
backward facing profile is a saw tooth function, as illustrated in Fig.3. 

To achieve a linear profile on the forward side, the energizing pulse time must be coordinated with 
the conductivity gradient, , and the desired front velocity, . Adopting the previous linear 
rise/fall model of the energizing pulse given by (1), but including the spatial gradient, and an 
appropriate time delay for the pulse from lamina to lamina in the forward direction, we have for 
each lamina: 

                                                                              (29.a-c) 

 
where  is the finite rise time. is the level of conductivity of each lamina needed to make the 

front end of the stack as a whole perfectly reflective, is the left surface of the lamina, and  is 

the number of laminae on the front side of the array (making  partially energized lamina in 
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total to constitute the reflective front). Allowing our eikonal approximation in which the rate of 
acceleration during the highest frequency is small, the above distribution, particularly the value 
given the gradient, , will produce a continuous front at the forward half, moving with the speed: 

  

 

 

Figure 3. Conductivity distribution and temporal progression for the one-sided continuous array. 

Thus, the instantaneous speed is controlled by the pulse duration, , which can be adjusted 

down to the minimum duration, , achievable by the electronics. By this strategy, the reflective 

surface can be made to travel at relativistic speeds using reasonable switching times while 
reproducing the necessary Doppler shift. 

At the same time, however, as Fig. 3 shows, the back end of the energized formation has a saw-
tooth configuration that possibly may not satisfy constraints (23) and (25). To determine the impact 
of this, we assume that the switching time and lamina thickness are much larger than those allowed 
by (23, 25), then recalculate the propulsive force magnitude first estimated in Report #1. 
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First, recall the force prediction of the earlier report. The reflective front was idealized by a single, 
thin surface, with identical properties for both forward and back surfaces. The “active” 
wavenumber range within lamina could be switched between fully reflective and fully transparent 
was denoted . The recommended scanning motion was a power law acceleration of 

the form: 

                                       (30.a,b) 

Where  is the total amplitude of each repetitive scan,  is the duration of each scan period and 
 is an exponent larger than unity. Note that is the maximum velocity occurring at the end of 

each scan. It was determined that instantaneous repetition of a scan would produce a temporary 
“back-wash” that would detract from the total momentum produced. It is better to introduce a 
pause of  before the onset of the next scan. Given these assumptions, the time averaged force 
is: 

                              (31.a-e) 

The second term in  is the dominant one (the force is in the negative z direction), and is 

unaffected by the forward reflectivity profile. The first term arises from the backward facing 
reflective surface, and actually reduces the net force. Let us assume that (23) and (25) are far from 
satisfied. Then the backward reflection of the vacuum state mode has no Doppler shift. The 
normalized momentum density is unity, not . This is offset by a decrease in the region 

over which the momentum density is propagated. The corrected expression for the quantity  is: 

                                           (32) 

A computed comparison of the force predictions is shown in Fig. 4, with the parameters used 
listed at the top of the chart. It is seen that the one-sided continuous array gives somewhat higher 
forces at the lower scan rates, but converges to the previous results when maximum forces are 
close to lightspeed. In any case, however, significant forces are to be attained when the maximum 
speed approaches unity. In this regime, the previous, thin surface model provides a close lower 
bound, so that we will continue to use it for subsequent calculations. 

In the scheme shown in Fig. 3, the effective is the total length of travel of the forward end of the 
reflectivity distribution. This has a delay when the scan first starts, but the process of turning off the 
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energizing signal can be reserved for the additional time period (see Report #1) set aside for 
quiescence to avoid force reversal. Therefore, the value of  in the above need not be altered, and 

the time duration,  , of the complete scan is given by: 

                                                  (33) 

 

 

Figure 4. Comparison of forces produced by the idealized thin lamina model and the one-sided continuous array. 

 

Lamina switching can be accomplished by a variety of means, not only by changing the 
conductivity, as in metallic reflectors. Thus, it is appropriate to specify the necessary lamina 
maximum reflectivity and relate this to the number of energized lamina, their thickness, and the 
desired front speed. We first proceed by considering how many lamina there should be in the 
forward half of the stack to obtain a reflectivity close to one. The quantity in (16) is clearly the skin 
depth of the forward echelon. For  close to unity,  (13.a) shows that the reflection coefficient is 
approximately: 
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                                                (34)                          

To ensure that the reflection coefficient is within about 5% of unity, we require: 

                                         (35) 

From Equation (16) it can be verified that the above reflectivity is a lower bound for all .  

Now the reflectivity of individual lamina can be accomplished via a variety of processes, not just the 
modulation of conductivity and charge carrier density in a metal or semiconductor. To preserve all 
options, it is prudent to specify the acceptable level of total reflectivity of the individual laminae. 
The treatment of the continuous case makes it clear that the stack reflectivity is the integral of the 
accumulated reflectivity through the total thickness of the front end. Let  be the reflection 

coefficient of a single lamina. We can approximate the stack reflectivity by: 

                                          (36) 

We conclude this section by giving a number of estimates and relationships among the various 
physical parameters.  First, as stated above, the maximum achievable velocity of the reflective 
surface is related to the lamina thickness, the number of front-end energized lamina, and the 

minimum possible switching speed, , by: 

                                                         (37) 

Then we estimate that the minimum required duration of the reflective surface acceleration 
maneuver is: 

                                                            (38) 

Then if we select  and  we have a specification for : 

                                                           (39) 

Then it follows that the scan frequency is:  

                                                          (40) 

 

Design Tradeoffs 

The general objective of the study is the determination of specifications for an experimental device 
consisting of an epitaxial stack of modest dimensions (< 0.3m), capable of producing forces that are 
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significantly above the threshold of detectability (between 1 and 10 N). To attain these goals the 
following discussion explains the tradeoffs executed to determine the specific design parameters. 

As an initial step, we determine the most efficient surface motion from the class of power law 
trajectories by examining the behavior of  for various values of the exponent, .  Fig. 5 

shows these results for both integer values above two and fractional values between two and unity.  
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Figure 5. Comparison of forces produced by various exponents in the power law motion profiles 

 

It is seen that for all values of ,  (and hence the force) attains its maximum value for . 

Therefore, we adopt this specification.  

Perhaps the two most sensitive parameters determining the force magnitude are the maximum 
speed during the motion trajectory and the upper limit of the wave number range wherein the 
laminae are switchable (the “active’ wavenumber region). The latter is denoted here by . With 

the  motion profile, we use the estimate of the scan frequency given above. Further, it is 
assumed that the longest wavelength for which the epitaxial device is active is at the red end of the 
visual spectrum. The smallest wavelength is chosen to be variable somewhere above the near 
ultraviolet end of the spectrum (corresponding to a wave number of ).  The achievable 

force is especially sensitive to the upper end of the active wave number interval, . 

The following plot, Fig. 6, shows the average force per unit area versus scan frequency for 
, and for various values of .  The blue line shows what is presently possible with 

known technology. Clearly, if the active switching wave number could be raised to the extreme 
ultraviolet, the force would be truly enormous.   

It is equally obvious from the chart that to obtain sizable forces, the maximum speed must be a 
substantial fraction of lightspeed. Since we estimate that silicon-based transistor switching 
technology is limited to 3 GHz, the force results show that we need a switching speed of about 1 
GHz, with , and maximum active regime wave number between near ultraviolet and 
roughly 30 times that wave number to obtain forces between 1 and 10 N for a device area of 

.  These specifications are adopted forthwith.  
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Figure 6. Comparison of forces produced by various values of  

It follows from Equation (38) that the duration of the motion wave form is . 

Further, combining Equations (38) and (40), we have: 

                                                     (41) 

Similarly, using (37) and (39) to eliminate  we obtain: 

                                                               (42) 

The balance between  and  is a tradeoff of the complexity of producing numerous very thin 

laminae that have graded reflectivity of sufficient precision, versus a smaller number of thick 
laminae that may not reproduce the reflective surface acceleration profile with sufficient accuracy. 
The choice depends very much on the manufacturing processes available. However, to provide a 
starting estimate, we note that switchable lamina do exist that are as thin as 0.1mm. If we allow for 
the fact that the lamina reflectivity must be graded to high precision, say to 1%, then we consider a 
0.5 mm thickness. Therefore: 

                                                (43) 

Returning to Equation (36), the minimum reflectivity required of each lamina is only: 
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                                               (44) 

This rather unrestrictive requirement could have the benefit that more intense design effort could 
be placed in improving the degree of transparency of the unenergized lamina, rather than the 
reflectivity. However, imposing a small bound on reflectivity requires considerable precision. Thus, 
it is prudent to raise estimate (44) to 20%. 

Regarding the in-plane dimensions of the epitaxial device, Casimir edge effects need some 
consideration. Report 1 assumed that the in-plane dimensions were much larger than the stack 
thickness, so that one-dimensional approximations could be used. However, a one-sided 
continuous design depends only on the Casimir thrust generated by the forward end of the echelon 
reflectivity distribution. In this case, when the maximum speed is close to lightspeed, the 
reverberant mode function has its momentum density vector close to the surface normal. As a 
crude estimate, edge effects may not be significant as long as the in-plane dimension, denoted by 

, is at least: 

                                                (45) 

It is immaterial whether the in-plane shape of the stack is square or circular. For performance 
predictions we assume the latter case, with serving as the diameter. 

 

Summary of Parameter Estimates 

 

The following table summarizes the nominal values of the design parameters so far estimated 

 

Table 1: Parameter Estimates 

Quantity Definition Nominal Value 

 Exponent in the power law 
acceleration profile 

  

 Upper end of the active wave 
number range 

  

 Lower end of the active wave 
number range 

  

 Maximum scan frequency   
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 Minimum switching pulse rise time   

 Maximum speed in the acceleration 
profile 

  

 Total force producing stroke of the 
acceleration profile 

  

 Number of lamiae   

 Lamina thickness   

 Maximum lamina reflectivity   

 Unenergized lamina transparency   

 Circular lamina diameter   

 

 

 

 

Force Production Estimates and Sensitivities 

In this section we use Equations (31) to estimate the force capabilities of a design having the 
nominal parameter values in Table 1 and to investigate the design sensitivities to the most 
significant parameters. The blue curve in Fig. 7 shows the force as a function of the scan frequency 
for the nominal parameter values. It turns out that the nominal scan frequency results in 10N, 
nearly exactly. It is apparent that there is the flexibility to increase the scan rate by a factor of two,, 
in which case the force is increased by over an order of magnitude. Roughly the same rate of 
diminution occurs when the same factor reduces the scan rate. In similar manner, the red and 
green curves show the effects of reducing and augmenting, respectively, the nominal upper limit of 
the active wave number range by a factor of two. This rate of variation changes the force by a factor 
of approximately 20 in either direction. Performance is clearly most sensitive to .  

In contrast, Figure 8 shows the corresponding results when the lower limit, , is varied from its 

nominal value of roughly  of . There is the same sensitivity to scan rate, but insignificant 

variation in the force when is changed by a factor of two. 
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Figure 7. Calculation the force produced by the nominal design, compared with the results produced by varying  Uk



 

Figure 8. Calculation of  the force produced by the nominal design, compared with results produced by varying  

  

Figure 9. Calculation of the force produced by the nominal design, compared with the results produced by varying  
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Fig. 9 shows the effect of varying the stroke length of the acceleration profile, . Note that when 
we keep the scan rate the same but decrease the stroke length, a higher peak velocity is required. 
Thus, the several curves in Fig. 9 are shifted horizontally, along the scan frequency axis. The lower 
than nominal requires a maximum speed quite close to lightspeed, such that at the nominal scan 
rate, the force curve leaves its power law regime and enters the close-to-lightspeed divergence. 
Consequently, at the nominal scan frequency, the red curve raises the force by a factor of roughly 
50 over the nominal result. In contrast, the green curve in Fig. is only ten-fold below the nominal. 

With regard to the other significant parameters listed in Table 1, the force obviously increases as 
the square of the diameter, . Changes in  and  will not affect performance appreciably as 

long as they are varied in inverse proportion. The product of lamina reflectivity and the number of 
laminae must be at lease the nominal. Finally the difference between the unenergized transparency 

and unity can reduce the force by as much as .  The nominal value of  is chosen so that 

is slightly above 90%. 

 

Conclusion 

In this report, an in-depth investigation of the lamina switching algorithm was performed.  From 
the performance analysis, details of the switching algorithm were refined, and the greatly improved 
“one-sided continuous array” design was developed. The updated design significantly reduces the 
device complexity and fabrication precision required while permitting much higher peak 
accelerations of the motion profile (hence, higher force outputs).  Integrating these refinements 
with the design, we performed trade-off analyses considering the more than dozen significant 
design parameters. A nominal design was developed meeting our goal of 1N to 10N force 
produced by a test device with size scale about 10cm. The sensitivities of this design to variations in 
the design parameters was explored. Within the state of our present knowledge, the nominal 
design can attain performance well above the edge of detectability, and there is considerable 
latitude in selecting design parameters to sustain this capability. 

Z

Z

lL d lN

( )1 lN
lt- lt

( )1 lN
lt-


